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ABSTRACT ;1(
/}//

By considering the mechanics of an electron projected into an
arbitrary potential field together with Poisson's equation it is
possible to set up a differential equation for the electrostatic
potential. The equation may be integrated and the photoelectron
density found as a function of height for four approximate models.

A simple model based upon monoenergetic photons and monoenergetic elec-
trons ejected vertically upward yields rough estimates of the parame-~
ters of interest. Another model takes into account the fact that the
photoelectrons are ejected at all angles. A general model takes into
account the illumination of the lunar surface by solar (black body)
radiation and also the distribution in energy of the electrons ejected
for each photon energy. An adiabatic gas model of the photoelectron
atmosphere provides an independent check of the results.

Assuming a metalic surface the electron density is of the
order of 104 electrons/cm3 at a half-height of the order of 1.5 cm
above the lunar surface. The charge distribution produces an electro-
static force field capable of levitating particles of the order of

Aw]%//

10-14 gm.
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CHAPTER I

INTRODUCTION

With the advent of the space age the problem of determining the
Moon's environment has become increasingly important. As the time for
the landing of the first man on the lunar surface draws near it is be-
coming of the upmost importance to know what conditions exist near to
and on the surface. This knowledge is necessary in order to design the
spacecraft and the various supporting equipment which will be neces-
sary once the landing is accomplished.

Many theories have been put forth concerning the various charac-
teristics of the lunar surface (Markov, 1962). There has been much
controversy concerning the correctness of these theories. While each
of these theories may have its good points, generally each one fails
to be consistent with all of the observed phenomenon.

Prior to the close up pictures obtained by Luna 9 (Winston, 1966)
and Surveyor spacecrafts (Jaffe, L. D. et al, 1966), it was assumed by
many (eg., Gold, 1955; Goodwin, 1958) that the lunar surface was covered
with a layer of dust. There was much disagreement as to the thickness
of the proposed dust layer and as to whether the surface was entirely
covered or only partially covered with the dust. Radlova (1939) sug-
gested that the variations in the surface brightness which are observed
might be accounted for by assuming the lunar surface to be only par-

tially covered by a continuous or dense layer of dust, the true surface



being exposed in places. The question arose as to where the dust came
from and how it became distributed over the surface. There was specu-
lation that the Moon's gravitational field swept the dust up from space
over the ages, or that the dust resulted from the erosion of the lunar
surface by a variety of physical forces. Platt (1958) postulated that
the lunar surface might be covered by dust particles consisting of
aggregates of unsaturated and free-radical molecular species rich in
carbon, nitrogen, and oxygen.

The best evidence from observed reflectivity and close up photo-
graphs taken by Luna 9 and Surveyor space craft indicates that the sur-
face of the Moon is extremely granular, having the appearance of sand.
Wesselink (1948) estimates from temperature measurements that the grain
size of the dust is something less than 0.03 centimeters. Microwave
measurements indicate that the lunar surface is smooth on the order of
10 centimeters (Evans and Pettengill, 1963). 1In photographs taken by
the Ranger 9 space craft on the order of a few miles above the lunar
surface (Schurmeier, Heacock, and Wolte, 1966), the surface appears to
have smooth rolling features.

To account for the lunar mares and the large scale smoothing,
Urey (1956) and DuFresne (1956) assumed that the Moon was formed in a
cold state from meteoritic material and postulated that the impact of
meteors, both large and small, with the surface produced large amounts
of dust. At the same time that the dust was formed, gases and water
were released which had been held in the pulverized material. These

gases and water formed a temporary atmosphere. The water fell as



precipitation which caused the dust to gather in surface depressions.
However, the Moon's retention of an atmosphere for an adequate length

of time and at a high enough density to allow precipitation seems rather
unlikely.

Considering the conditions which exist on the lunar surface and
comparing them with those which exist in dry caves here on Earth,
Goodwin (1958) proposed that they are similar. In both cases there
would be no disturbance of the surface by the flow of water or the move-
ment of an atmosphere. To account for the lunar mares and the large
scale smoothing, Gold (1955) theorized that the dust behaved similar to
a liquid with no internal viscosity and that it tended to flow to
points of lower gravitational potential energy. Under the assumption
that seismic activity exists on the Moon, Gilvarry (1957) advanced the
hypothesis that frequent and strong tremors caused dust particles to
jump and roll into depressioms.

Whipple (1951) believes that corpuscular radiation from the Sun
acts to sinter dust particles together and prevents any flow over the
surface. An investigation of this possible sealing of the dust layer
by solar wind sputtering has been made by Wehner and his associates
(1965). Measurements made in the laboratory indicate that sputtering
could definitely produce sealing of the surface. Photographs taken only
a few feet above the surface by Luna 9 and by Surveyor (Winston, 1966)
indicate that it consists of a rather firm porous material. The gas
jets on Surveyor failed to stir up any dust whatsoever. In view of

this evidence, Whipple's hypothesis seems to be essentially correct.



While the surface may be sintered at the present time, there must
have been a period when mass transport of dust or magma took place in
order to provide for the large scale smoothing or apparent erosion on
the 10 centimeter scale. The physical forces which could cause such an
erosion of the lunar surface must be considerably different from those
which are encountered on the Earth's surface. The processes which erode
the Earth's surface are primarily associated with the existence of the
atmosphere. It is possible that the physical forces which produce
erosion of the lunar surface are of such small magnitude that they would
go completely unnoticed here on the Earth's surface. The erosion may
be produced by some process or processes which cannot occur when any
appreciable atmosphere is present, such as the Earth possesses.

The Moon's atmosphere is very rarefied i1f it exists at all.

Using kinetic theory, Sytinskaya (1963) arrives at the conclusion that
only the heaviest gases such as krypton could be present in any appre-
ciable amount near the lunar surface and that for all practical purposes
the atmosphere should be regarded as nonexistent. The formation of an
atmosphere of xenon and krypton on the Moon 1s considered by Edwards

and Borst (1958). They list four mechanisms by which an atmosphere of
the heavier gases might be formed. Attempts to detect a lunar atmos-
phere by spectroscopic methods (Teyfel, 1959) have given either negative
or completely inconclusive results. The French astronomer Dollfus (1956)
by measuring the brightness of light scattered in the supposed atmos-
phere arrived at a density not exceeding 10-92 times the density of air

at the Earth's surface. This corresponds to a density on the order of
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1010 pmolecules per cubic centimeter. This would be a very thin atmos-
phere and therefore could play little part in the actual eroding of the
lunar surface.

It has been suggested by Fielder (1961) that in the absence of a
conventional atmosphere there could be an electrical 'space charge'
close to the lunar surface during the lunar day due to radiation from
the Sun and the solar wind. Brandt (1960) speculates that the electron
density close to the surface of the Moon may be on the order of 103 or
104 electron per cubic centimeter. It is possible that this atmosphere
of photoelectrons may provide a mechanism by which positively ionized
dust particles could be transported over the surface of the Moon. Gold
(1955, 1956) gives the following mechanisms which he believes are cap-
able of producing transport of dust particles over the lunar surface:
(1) The night time condensation and the day time evaporation of vyolatile
substances on the surfaces of the dust particles, (2) Thermal motion of
the fine dust particles, making a layer of dust behave as a gas of very
high molecular weight, (3) Photoemission of electrons from the surface
of dust particles under the effect of the Sun's radiation, (4) Explo-
sions of micrometeorites, (5) Motion of the rarefied residual atmos-
phere. Gold's suggestion of the transport of dust over the surface by
photoemission of electrons is similar to Fielders (1961) suggestion of
the possibility of an atmosphere of photoelectrons close to the lunar
surface.

At least two attempts have been made to determine experimentally

the electron density near the lunar surface. By observing the



occultations of a radio star by the Moon's disc, Elsmore and Whitfield
(1955) arrived at an upper limit for the Moon's atmosphere of 10712 o
that of the Earth's atmosphere at sea level. More accurate measure-
ments by Costain, Elsmore and Whitfield (1956) set an upper limit of
10713 for the surface density as compared to that of the Earth's at
sea level. This corresponds to an electron density at the lunar sur-
face of approximately 103 electrons per cubic centimeter,

Due to the Moon lacking any appreciable atmosphere, the surface
is exposed to the total spectrum of the Sun's radiation whereas the
Earth's surface is shielded from the radiation in the shorter wave-
lengths of the spectrum. In addition, the presence of the Earth's
atmosphere would cause any accumulation of charge above the surface to
be dissipated by conduction. The Moon may possess an atmosphere con-
sisting of photoelectrons close to the surface due to the lack of a
more conventional atmosphere.

Although the idea of photoemission of electrons and an accompany-
ing electron atmosphere close to the lunar surface has been postulated,
no apparent effort has been made to determine theoretically the pre-
cise magnitude of the effect. It would be very interesting to know
the density of such a photoelectron atmosphere. Once the photoelectron
density is known it would be possible to estimate the maximum mass gf
a positively charged dust particle that could be levitated by the
electrostatic field. Once the photoelectron density is known other
interesting effects produced by the electron atmosphere close to the

lunar surface can be investigated. The electron atmosphere might



possibly provide a means of communications over the lunar surface.

An electron atmosphere produced by the photoelectric effect is
not limited to the moon, it will exist near the surface of any object
in space illuminated by sunlight. Space stations, space craft, the
planet Mercury and the asteroids will all have such a photoelectron
atmosphere.

It may be possible to obtain a direct conversion of solar energy
(radiation of short wavelength) to electrical energy by collecting the
photoelectrons. The kinetic energy of the electrons can, in principle,
be converted to a direct current at a low voltage. This might be a
practical means for converting solar energy for use in space. While
the efficiency of such a device would be quite low, the simplicity and
reliability might make it practical.

Quite independent of possible applications, the determination of
the charge distribution produced by the ejection of photoelectrons
from a surface illuminated by black-body radiation is an interesting

theoretical problem well worth solving in its own right.



CHAPTER II

GENERAL THEORY

Electromagnetic radiation in the ultraviolet region and at
shorter wavelengths will eject photoelectrons from a surface (Hughes
and DuBridge, 1932) and (Simon and Suhramann, 1958). It will be pos-
tulated here that the lunar surface consists of metals in their reduced
or uncombined state. This is a reasonable assumption due to the reduc-
tion of metal compounds by the action of the solar wind, soft X-rays,
and cosmic rays (Wehner and associates, 1965). The particles com-
prising the lunar surface overlap one another and only their upper sur-
faces will be exposed to the reducing effect of the solar wind and
radiation. For this reason the surface (while not forming a continuous
conductor) may appear to be a metallic surface to incident ultraviolet
radiation. Since the free atoms do not form a continuous conductor,
the surface will have a low electrical conductivity for microwaves
(Hey and Hughes, 1959). Since the reduced metals are only a few atoms
thick on the surface the thermal conductivity of the surface will
remain low (Jaeger and Harper, 1950). The ejection of photoelectrons
from the particles on the lunar surface will produce a charge distri-
bution above the surface and an accompanying electrostatic field.

The electrostatic field will support positively charged parti-
cles, the size of the particles being determined by the magnitude of

the field and the magnitude of the positive charge on the particle. It



may be assumed that minute particles will be present due to meteoritic
impacts and inflow of gravitationally trapped cosmic dust particles.
Such particles will become positively charged by the photoelectric
process and bombardment by the solar wind and cosmic rays. Once the
small dust particles are positively charged, the electrostatic field
produced by the photoelectrons will be able to levitate them above the
surface. The supported dust particles can then be transported later-
ally by nonuniformities in the electrostatic field caused by the irreg-
ularities of the lunar surface. The transport of the dust particles
may also come about through collisions of the dust particles with photo-
electrons, solar protons, or cosmic rays. It may be assumed that the
positively charged dust particles will tend to return to the lunar sur-
face at places where the surface is least positively charged. This
would mean that the dust particles would tend to collect in depressions
where shadows would yield no photoelectrons and no positive charge.
This then provides a possible mechanism for the apparent erosion of the
lunar surface.

In this investigation of a possible photoelectron atmosphere
close to the lunar surface four models are considered. They are:

1) Simplest Model in which it is assumed that all photoelectrons

are ejected monoenergetically perpendicular to the surface by

monochromatic radiation,

2) Modified Simple Model in which it is assumed that the photo-

electrons are ejected monoenergetically with a specified

angular distribution by monochromatic radiation,
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3) General Model in which it is assumed that the surface is

irradiated by black body radiation,

4) Adiabatic Gas Model in which the photoelectron atmosphere is

assumed to form an adiabatic gaseous atmosphere.
These four models are then compared in order to establish confidence
in the results.

From the dynamics of the electrons moving in any potential field
it is possible to find a relationship between the particle density
(i.e., probability of finding a particle in a given element of volume
in a given time interval) and the potential. Poisson's equation gives
another independent relationship between the electron density and the
potential. By eliminating the particle density a nonlinear differen-
tial equation is obtained for the potential as a function of the height
above the surface. Once a solution has been obtained the electron

density may be readily found and the various applications investigated.



CHAPTER IIT

SIMPLEST MODEL

A very simple model will be considered first in order to lay the
ground work for more realistic models that will be considered subse-
quently. The present model serves as an introduction to some of the
concepts and techniques useful in solving the more general models. The
present model may also give some idea as to the order of magnitude of
the quantities involved.

For the present model it is assumed that monoenergetic photons
eject photoelectrons normal to an infinite plane surface. The further
simplifying assumption is made that all electrons ejected have identical
kinetic energies as they leave the surface. A steady state situation
exists in that electrons return to the surface at the same rate at which
they are being ejected from the surface by the incident radiatiom.
Because of this equilibrium condition there is no net current flowing

through any plane lying above the surface.

I. Poisson's Equation

The electric potential at any point above the surface is speci-

fied by Poisson's equation, which is

d2¢/dz2 = 4mep s (3.1)
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where p is the density of the photoelectrons, ¢ is the electric potential
at a distance z above the surface from which the electrons are ejected,
and e is the magnitude of the electronic charge. Gaussian units are
used throughout unless otherwise indicated. The potential energy U, of

an electron at an electric potential ¢ is

U = -ed . (3.2)

Replacing ¢ in Poisson's equation (3.1) by the potential energy U, gives

d2v/dz? = ~4me2p . (3.3)

Another expression for p in terms of U, z, or both must now be found in

order to obtain a solution of equation (3.3).

II. Density p as a Function of Velocity v,

The upward directed current per unit area, j, of the photo-~

electrons may be written

3 = -epv,/2 R (3.4)

where v, is the velocity of any one of the electrons as it passes up-
ward through the point z. The factor of 2 occurs in the denominator

since p is the total density of electrons both rising and falling. The
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current j, may also be expressed in terms of electron flux n,, or

j = -en s (3.5)

where n, (a constant for all z < z,, where 2z is the maximum height)

is the number of electrons passing upward through a unit area per second.

Combining equations (3.4) and (3.5) gives

p = 2n,/v, . (3.6)

Using equation (3.6), Poisson's equation may now be written

d2u/dz? = —81Te2no/vz . (3.7)

III. Velocity v, as Function of the Potential Energy U

Each electron at a point z above the surface possesses a poten-

tial energy U. Conservation of energy then requires

wi/2 +U=E (3.8)

where E. is the total energy of one electron at any point above the
surface. The total energy may be found in terms of the boundary con-
ditions at the z = 0 plane. At the plane where z = 0, equation (3.8)

becomes
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2 =
w2 /2 + U =E, , 3.9
where the subscript zero is used to designate the values that the quan-
tities possess at the z = 0 plane,

According to the Einstein photoelectric equation, the maximum

kinetic energy that a photoelectron can have as it leaves the surface

is
2 = -
{(mv /2)max E-W , (3.10)

where v is the velocity of ejection, E is the energy of the incoming
photon and W is the work function for the surface. The kinetic energies
of the photoelectrons ejected from a surface by monoenergetic photons of
energy E are distributed over a range of values from zero to this maxi-
mum energy (E - W), equation (3.10). It is found experimentally that
for most metals and for photons of wavelength in the ultraviolet region
of the spectrum, the average kinetic energy of the electrons ejected
may be expressed as some fraction ) of the maximum kinetic energy of
ejection (Hughes and DuBridge, 1932). This average value will be taken
as the single value for the kinetic energy of all the ejected electronms.

The initial kinetic energy Eo of the ejected photoelectron thus becomes

E, = mvgolz = A(E - W) , (3.11)

where according to Hughes and DuBridge (1932), for metals, X = 0.4.
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Combining equations (3.9) and (3.11) gives

Et =A(E -W) + U° = Eo + Uo . (3.12)
The energy equation (3.8) may be solved for the velocity v,,

giving
v, =t [2(E, - O/m]1/2 | (3.13)

The positive sign in equation (3.11) holds for electrons traveling up-
ward from the surface and the negative sign is for the case where elec-
trons are returning to the surface.

At some distance z, above the surface the electron reaches a
turning point. At the turning point the velocity of an electron becomes
zero. It is convenient to choose the potential energy U to be zero at
the turning point. From equation (3.13), it may be seen that for the
velocity at the turning point to be zero and the potential energy U set
equal to zero, the total energy E, must be taken equal to zero. This

means, from equation (3.12), that U, must be chosen such that
E, = 0= E, + Uo . (3.14)
The expression (3.13) for velocity then simplifies to

v, = +(-20/m)1/2 . (3.15)
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: Substituting equation (3.15) into (3.7) yields a differential equation

in U alone which is

i d2u/dz? = -b/(-m)1/2 (3.16)
‘ where the constant b is defined to be

b = 8re2(n/2)1/2n, . (3.17)

Care must be taken to apply equation (3.16) only within its range of
\ validity. It will not be a solution above the z = z plane where the
source vanishes. To account for the source being zero for z 2 z, a
unit step function may be inserted so that the entire solution is zero

above the z = z plane. The unit step function is defined by

‘ 1 for x 2 0
S(x) = . (3.18)
0 for x < 0

With the insertion of the step function S(-U), U being always negative,

into equation (3.16) then yields the desired differential equationm,

d2u/dz2 = -b S(-U)/(-U)1/2 . (3.19)
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IV. Integration of the Differential Equation

The assumption has been made that all electrons are ejected with
the same initial kinetic energy. It may also be assumed that they are
ejected at a uniform rate. With these two assumptions the upward flux
n, is a constant for all values of z and depends only on the flux of
incoming energy. Multiplying both sides of equation (3.19) by dU/dz

and integrating with respect to z yields
(du/dz)? = t(-v)1/2 | (3.20)

The constant of integration has been chosen as zero since the electric
field, varying as dU/dz, and U vanish together at z = zp.
Taking the square root of equation (3.20), choosing the plus

sign, and integrating yields
-U = (9b/8)2/3(zy - 2)H/3 (3.21)

the constant of integration having been chosen so that U = 0 for z = Zne
This result, equation (3.21), gives the desired relation of U as a
function of the height above the surface =z.

The density of electrons may now be found by taking the second
derivative of equation (3.21) and substituting into equation (3.3) or

from equations (3.6) and (3.15); which yields
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o =0,/ -z/2)2/3 (3.22)

where the constant p  , the electron denmsity at the surface, using

equation (3.17), becomes
po = (9b/8)2/3[ome?2 2/3 = (2un 2 fome?z, )13 (3.23)

where the constants n and zm are yet to be determined. This result,
equation (3.22), is plotted in Figure 3.1 . Although p/p, approaches
infinity as z/zm approaches unity, the total area under the curve
remains finite and is proportional to the positive charge produced on
the surface by the ejection of the photoelectrons.

In order to obtain zZ equation (3.21) at z = 0 yields

-U, = (9b/4) 23 g3 (3.24)

where Uo is the potential energy of an electron at the surface. Solving
this equation for z and using equation (3.14) for the value of U, it

is found that

z = (4/9b)1/2Eg/“ = (Eg/1621r2e'*mn§)1/" , (3.25)

where b was obtained from equation (3.17). and where Eo is defined by

equation (3.11). Only the constants n and Eo remain to be determined.
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Simplegt Model, equation (3.22)
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V. Evaluation of the Photoelectron Flux, n

It may be assumed that n, the flux of electrons leaving the
surface, will be proportional to the flux of the incident photons (the
photoelectron current being much less than the saturation current). The
source of the electromagnetic radiation for the present problem is the
Sun. Assuming that the Sun radiates as a perfect black body and using

the Planck black body radiation formula (French, 1958), the number of

photons radiated by the Sun per second per square centimeter of area

with the energy E, is

dn_/dE = (E2/6c2n43) / (E/KT -1) , (3.26)

where T is the temperature of the photosphere and c is the velocity of

light in vacuum. Since the work function W for the lunar surface cor-
responds to a photon energy in the ultraviolet region of the spectrum
(for most metals) and the solar energy is a maximum in the infrared
region, only those values of E/kT which are much greater than unity

need be considered, W/kT >> 1. Consequently, equation (3.26) reduces

to the Wien formula (French, 1958)

dn /dE = bE2e"E/KT | (3.27)

where bS is defined to be
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by = (6c2n243)-! . (3.28)

To obtain the photon flux at the lunar surface it is necessary to
decrease the flux from the Sun's surface by the factor (rs/r)z, where
rg is the solar radius and r is the distance from the Sun to the Moon.

The photon flux at the lunar surface becomes
dnp/dE = (r /r)2(dng/dE). (3.29)

where n, is the number of photons striking per unit area per second at

the distance r from the Sun.

The relationship between the number of photons which strike a
surface to the number of photoelectrons ejected is a rather complicated

function of the photon energy. The yield of photoelectrons ejected by

photons of energy E is given by
dno/dE = fB F(E) (dnp/dE) s (3.30)

where f is a factor which indicates the fraction of the photons which
eject electrons (i.e., the quantum efficiency of the process), B is a
constant for a given material and F(E) is the spectral distribution
function (Hughes and DuBridge, 1932). Experimentally (Plenard and

Becker, 1928) the spectral distribution may be fitted sufficiently well

for the present purposes by the simple function
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F(E) = (1 - W/E)? . (3.31)
Using equation (3.31), equation (3.30) becomes
dn_/dE = £B(1 - W/E)Z(dnp/dE) , (3.32)

where the constant B and the efficiency f must be determined. From
equation (3.32), using equations (3.27) and (3.29), the total flux of

electrons from the lunar surface is

n_ = £Bb_(r_/r)2(E - W)2 B/kT 4g ) (3.33)
(o] W S S

where the constant bS is defined by equation (3.28). Upon performing

the integration, equation (3.33) yields
n = 2fBbS(rS/r)2(kT)3e_W/kT , (3.34)

where the constants f and B remain to be evaluated and suitable values
must be chosen for the work function for the surface, and the tempera-
ture of the Sun's photosphere.

In order to evaluate the constant B the relationship between the
energy flux of the incident photons and the energy flux of the ejected
electrons may be considered. Equating the energy flux of the ejected

photoelectrons to the energy flux of the incident photons reduced by
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the energy lost in the work function and the efficiency factor for the

surface, yields

y A(E - W) (dn_/dE) dE = f £(E - W)(dn_/dE) dE  ,  (3.35)
W W P

where the integral on the left is the energy flux of the ejected elec-
trons and the integral on the right is the effective energy flux of the
incident photons. Using equations (3.32), (3.34), and (3.27), equation

(3.35) may be solved for B, yielding

B = S A(E - WYE2¢~E/KT dE/j1 (E - W)3¢~E/KT gg . (3.36)
W W

The integrals in equation (3.36) may be evaluated, yielding

5 AE - WE2"E/KT 4p
W

= 6ACKT) *[1 + (2/3) (W/KT) + (1/6) (W/kT)2] ¢ W/kT —  (3.37)

and

f E - w3 B/KT g5 - grr)4e W/KT | (3.38)
W

Substituting these results, equations (3.37) and (3.38), into equation

(3.36) yields
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B = (A/6)(6 + 4x + x2) , (3.39)

where X is defined to be
X = W/KT . (3.40)

The efficiency factor f, may be determined from the experimental
data relating the photon flux at a given surface to the photoelectron
flux at the surface. Once the photon flux and the photoelectron flux
for a particular photon energy is known, equation (3.32) may be used to
determine the efficiency factor f, for the particular surface. Measure-
ments of the quantum efficiency have been made (Kenty, 1931; Plenard and
Becker, 1928). These measurements give a value for f on the order of
1073 .,

The constant rébs/r2 may be evaluated from the known value of the
solar constant R, (i.e., the total energy flux over all wavelengths of
sunlight at the Earth's mean radius from the Sun). The total energy
flux at the distance r may be found by using equation (3.26) and inte-

grating equation (3.29) over the entire spectrum, which yields
R = w*(kT)"*r?b_/15r2 , (3.41)
o] s S
where the constant bS is defined by equation (3.28); or

2 2 - L 4
rsbs/r = 15R0/n (kT) . (3.42)
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The flux n , may now be written, using equation (3.42) and (3.39), as

30£BR ¢ W/ KT /rkT

=]
]

(5£RA/TKRT) (6 + 4x + x2)e™X (3.43)

where x is defined by equation (3.40).

VI. Evaluation of the Effective Mean Photon Energy, E

The Sun does not, in fact, radiate monoenergetic photons, there-
fore some reasonable average estimate must be obtained for the parameter
E in equation (3.11). The value of E in equation (3.11) may be taken as
the average energy of those photons which are effective in ejecting

photoelectrons; thus, from equation (3.27) through (3.32), the average

value for E is

E= (& =

[e2]

X E(1 - W/E)?(dn_/dE) dE/g (1 - W/E)2(dn /dE) dE  ,  (3.44)
W W

where the factor (1 - W/E)? is the spectral distribution function, equa-

tion (3.31). The integrals in equation (3.44) may be evaluated to yield

5 E(1 - W/E)?(dn_/dE) dE = 2(kT)3Wb (1 + 3kT/W) e W/KT  (3.45)
W
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and

S\ (1 - W/E)2(dng/dE) dE = 2(kT)%b_eW/KT | (3.46)
W

where the constant bS is defined by equation (3.27). Substituting the

results of equations (3.45) and (3.46) into equation (3.44) yields

E = W+ 3kT , (3.47)

the value of the energy E of the incident photons which will be used in

equation (3.11) for the simplest model. The average kinetic energy of a

photoelectron leaving the surface, E, , from equations (3.11) and (3.47)

then becomes

Eo = 3AkT (3.48)

VII. Surface Charge Density and Half Height

The surface charge demsity is positive and may be obtained by

summing the charge density above the surface in order to find the total

negative charge above the surface; thus,

z
o = e\g’ " p dz . (3.49)

Substituting equation (3.22) into (3.49) and integrating yields
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o = 3epozm , (3.50)

where o is given by equation (3.23) and z, 1s given by equation (3.25).
The half height h, defined as the point at which half the charge

lies below and half above, of the charge distribution may be found from

h
e‘y pdz = o/2 . (3.51)
o
Upon substitution of equation (3.22) and integrating, equation (3.51)

yields

h=7z/8 . (3.52)

VIII. Numerical Estimates of the Parameters

The measured value for R, is 1.33 x 10% ergs per square centi-
meter per second (Handbook of Physics and Chemistry, 1963). The cutoff
wavelength (Ac = hc/W) for most metals falls in the ultraviolet region
of the spectrum (Hughes and DuBridge, 1932). A rough estimate of the
photoelectron density may be obtained by considering a cutoff wavelength
of 3000 angstroms. This value falls within the ultraviolet region of
the spectrum. The value for W is then found to be 6.63 x 10”12 ergs.
The temperature of the Sun's photosphere is approximately 6000° Kelvin.

From equation (3.40), x = W/kT = 8.01; assuming the value of

A =0.4 (A = 0.40 £ 0.05 , Hughes and DuBridge, 1932), equation (3.43)
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yields the estimate

n, = 1.1 x 10!5 f em™2gec~? . (3.53)

The efficiency factor f may be estimated by assuming that the lunar
surface is covered with uncombined metallic atoms. For wavelengths in
the ultraviolet region and shorter the surface will then appear to be a
continuous metallic surface. The value of £ = 10~3 fits experimental
data for several metals, where 10~* < f S 10~2 (Plenard and Becker,

1928; Kenty, 1931), the flux density becomes
n, = 1.1 x 1012 em™2sec™! . (3.54)
From equations (3.25), (3.48) and (3.54), z, is found to be
z. = (A3k3T3/6r2%e"mn2)1/* = 1.8 em . (3.55)

The electron density at the surface is then found from equations (3.6),

(3.11) and (3.47), to be

n, (2n/37kT) /2

©
]

SfRo(Zml/3n8k3T3)1/2(6 + 4% + x2)e7¥

4.8 x 10% cm™3 . (3.56)
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From equations (3.50), (3.56) and (3.55) the surface charge density

becomes

o =1.3 x 10~% statcoul cm 2 . (3.57)

The half height of the charge above the surface may be found from

equation (3.51) and is

h=1.6cm . (3.58)

These results are tabulated in Table 3.1.



Table 3.1 Parameters for the Simplest Model
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Quantity Symbol Value
Solar constant R, 1.33 x 10° ergs cm™2 sec”!
Solar temperature T 6000° K
Approximate work
function W 6.6 x 10-12 ergs

Average energy

Most probable fraction of
maximum kinetic energy

Efficiency factor

Electron flux

Electron density at z = 0

Maximum height

Half height

Surface charge

density

9.1 x 10712 ergs

0.4
1073

1.1 x 10!2 cm™2 sec~!
4.8 x 10% cm™3

1.8 cm

1.6 em

1.3 x 10" statcoul cm™?




CHAPTER IV

MODIFIED SIMPLE MODEL

In the previous chapter the assumption was made that all electrons
were ejected normal to the surface with identical velocities. Actually
photoelectrons will be ejected at all angles. To take this into consid-
eration, the present model assumes that the initial total kinetic
energy Eo of each electron is the same, but that electrons are emitted
as some distribution in the direction with respect to the normal to the

surface. The vertical motion will be independent of the lateral motionm.

I. Vertical Component of Velocity, V,s as Function of Potential, U

The part of the kinetic energy associated with the vertical
motion mv%/Z, varies from zero to the maximum E;. The value of E_ is
assumed to be the average energy of the emitted electroms which is
related to the energy of the incident photons by

E = ME - W) R (4.1)
where the quantities A, E, and W are defined in equations (3.10) and

(3.11). The total kinetic energy of the ejected electrons in terms of

the velocities becomes

E, = m(v2_ +v2)/2 , (4.2)
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where v, , represents the component of the velocity in the lateral

o

direction at z = 0 and v,  is the vertical component of the velocity at

z = 0. Solving equation (4.2) for v,, yields

Voo = [2 cos?6 A(E - W)/m] 1/2 (4.3)

where ¢ is the angle the electron makes with respect to the normal upon

ejection.
The motion of the electron in the direction transverse to the z
axis is of no interest in this problem. From energy considerations, the

total energy E, associated with the motion in the z direction is
E, = (mv/2) +U (4.4)

z

where U = -e¢ is the potential energy of the charge at the electrostatic

potential ¢. At the z = 0 plane, equation (4.4) becomes
= 2
E, = (mvz,/2) + U, . (4.5)

Combining equation (4.3) and (4.5) gives

= 2
E, = E_ cos’8 + U, , (4.6)

and the energy equation, equation (4.4), gives
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(mv3/2) + U = E; cos®0 + U, . (4.7)

Solving equation (4.7) for the velocity v, as a function of the initial

angle 6 and the potential energy U, gives

v, = (2/m/2(E_ cos?e + U, - MI/2 | (4.8)

A velocity v, is defined only as long as
E cos?0 + U,-U02z20 . (4.9)
)

II. Initial Angular Distribution of Photoelectrons

If the number of photoelectrons ejected per unit area per unit

time is n,, the flux per unit solid angle dno/dQ, may be represented

by

dno/dQ = nog(e) . (4.10)

The function g(9) must then satisfy the normalizing condition

m/2
Jﬂ 27g(6) sin 6 do = 1 . (4.11)
0

Upon integration over the azmithal coordinate, equation (4.10) becomes
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dno/dG = Zﬂno sin 0 g(8) . (4.12)

The density of electrons dp/d® created above the surface by
electrons which are ejected from the surface at an angle 8 to the normal

may be written as
dp/de = 2(dno/d6) S(vz)/vz , (4.13)

where the factor of 2 allows for the inclusion of the returning elec-
trons and S(v,) is a unit step function as defined by equation (3.16).

Using equations (4.8), (4.9), and (4.12), equation (4.13) may be written

as

27r(2m)1/2no sin 6 g(8) S(v,)
dp/de = . (4.14)
(E, cos?6 + U, - U)1/2

In order to find the total density due to electrons ejected at all
angles an integration over the variable 6 must be performed.

The angular distribution is found experimentally (Ives, Olpin
and Johnsrud, 1928) to favor the upward directed electrons, the trans-
verse flux going to zero. The distribution is dependent upon the value
of the electrostatic field at the surface. While this function g(8) is
derivable from a detailed consideration of the scattering of the photo-
electrons in the material before they escape, here it will be sufficient

to approximate the distribution by the cosine of the angle 6, assuming a
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low value for the electrostatic field at the surface; thus,
g(8) =~ (1/7) cos © ’ (4.15)

where the factor of 1/m is a normalization factor, equation (4.11).
This choice, equation (4.15), fits the experimental data quite well

(Ives and Fry, 1922).

III. Derivation of Differential Equation

Making the substitutions
y =cos 8 , V=U-1, s (4.16)
equation (4.14) and (4.15) yield
0
p=-2 (/2| [y sy -n/Ey*-nY20e . 41D
1

The definition of y, equation (4.16), and the unit step function, equa-

tion (3.16), yield the condition
12y 2 (vEDHZ (4.18)

therefore the upper limit on the integral becomes (V/EO)I/2 rather than

zero. Equation (4.17) then becomes
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1
o = 2n (2m)1/2 S(E_ - V) Jﬂ y(E y2 - v)-1/2 gy i (4.19)
o [o] ‘/‘—’E o

the unit step function remains due to condition (4.18) that V/Eo <1.

Performing the integration of equation (4.19) yields
p = 202m/2(n /Ry S(E_ - MI/2 | (4.20)

Using the definition of V, equation (4.16), Poisson's equation,

equation (3.1), may be written as
d?v/dz? = -4me?p . (4.21)

Substituting equation (4.20) into (4.21) yields the desired differential

equation
d2v/dz? = -b) S(E_ - V) (E, - /2 (4.22)
where the constant b; is defined to be

by = 8ﬂe2(2m)1/2no/Eo . (4.23)
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IV. Integration of the Differential Equation

This equation, equation (4.22), may be integrated by multiplying

both sides by dV/dz; which yields
(dv/dz)2 = (4b1/3) S(E, - V) (B, - V)3/2 | (4.24)

the constant of integration having been chosen as zero so that the field
which varies as dV/dz vanishes when V = E;. The final integration may
be performed upon taking the square root and dropping the superfluous

step function; thus
(E, - V) = (b1/12)%(z, - 2)* (4.25)

where the constant of integration z  has been chosen so that U = 0 or
V = EO at the turning point z = z;. The constant z may be obtained
from equation (4.25) by setting z = 0 and noting that V= 0 at z = 0, as

it must according to the definition (4.16); thus,
2y = (L44E /bD)1/H = (9B3/8r2etmn2)t/% (4.26)

where b; was obtained from equation (4.23). Using the same average value

for E,, equation (3.48), as in the simple model, equation (4.26) may be

written
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Czy = (26313373 /8n2e4mn2) 1/ (4.27)

which may be compared with equation (3.55).

The density of electrons may now be found by taking the second
derivative of equation (4.25) and using equation (4.21); which yields

p=p,(1-2/z)% (4.28)

where po is given by

o, = bjz2/48me? (4.29)

where equation (4.28) may be compared with equation (3.22) for the

Simplest Model. Combining equations (4.29), (4.26) and (4.23), yields

0o = 0 (2m/E)1/2 = n_(2n/3xkT)1/2 (4.30)

where the value of Eo has been chosen as the appropriate average value

from equation (3.48). This result is identical, as it should be, to

equation (3.56). A plot of equation (4.28) is shown in Figure 4.1.

V. Surface Charge Density and Half Height

From equations (4.28) and (3.49) the surface charge density

becomes
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Zn
g = ep \g 1 - z/z.)%2dz . (4.31)
o] 0 m

Upon integration, equation (4.31) yields

o= epozm/3 . (4.32)

where Po and z may be found from equations (4.30) and (4.27).

The half height of the charge distribution may be found from

equation (3.51) upon substitution of equation (4.28) and integrating;

thus,

h= [1- /232 =0.206 2, (4.33)

VI. Numerical Estimates of the Parameters

Using the values for k, T, A, Eo’ and n, from Table 3.1 , the

value for Z s equation (4.27), is found to be

2y = [243(\kT) 3/8%e"mn2 114 = 6.6 cm (4.34)

The electron density at the surface from equation (4.30) or (3.56) is

found to be

o, = 4.8 x 10% em™¥ . (4.35)
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The numerical value of ¢ is then found from equation (4.32), (4.34),

and (4.35) to be

o =5.0 x 107° statcoul cm™2 . (4.36)

The half height is found from equations (4.33) and (4.34) to be

h=1.4 cm . (4.37)

These results are tabulated in Table 4.1.

Table 4.1 Parameters for Modified Simple Model (The parameters

remaining the same as in the Simple Model are listed in Table 3.1)

Quantity Symbol Value
Electron density Py 4.8 x 10% em™3
Maximum height zy 6.6 cm
Half height h 1.4 cm

Surface charge

density o 5.0 x 103 statcoul cm™2




CHAPTER V

A GENERAL MODEL

A more general and realistic model may now be considered by using
the techniques developed in the preceding two chapters. Two aspects of
the problem which were neglected in the previous chapters and which will
now be considered are:

1) The photoelectrons emitted from a surface by monochromatic
radiation display a distributior ~F Timatdn cncvadan and mak cdanle
single energy as #- .wed in the previous two chapters (the average value
indicated by equation (3.11) ).

2) The lunar surface is illuminated by black body radiation from
the Sun and not by monochromatic radiation as assumed in the previous

two chapters (the average frequency indicated by equation (3.44) ).

I. Kinetic Energy Distribution of Photoelectrons

Ejected by Monochromatic Radiation

The kinetic energy distribution of photoelectrons ejected by
monochromatic radiation may be represented by the function G(E'), the
fraction of photoelectrons emitted per unit energy interval at the
energy E'. This function has been obtained experimentally (Hughes and
Dubridge, 1932; and Simon and Suhramann, 1958).

In principle, one might try to account for this distribution by

first assuming the electrons in the metal are distributed in energy
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according to the usual Fermi energy distribution for the metal. The
kinetic energy of the ejected electron would then be distributed accord-
ing to the energy difference of the photon energy and the electrons'
energy in the metal (Dubridge, 1933). This theory is not sufficient,
however, since it fails to take into account the depth of the electron
when it receives the photoh's energy. The number of photoelectrons
generated at a particular depth will depend upon the attenuation of
photons with the depth of penetration (a few atomic distances). The
photoelectron proceeding from a particular depth to the surface will
lose energy by multiple coulomb scattering and as a result straggling of
the photoelectrons will occur (Leighton, 1959). The situation is very
complicated and no theory yielding satisfactory agreement with observa-
tion has as yet been proposed.

In view of the lack of an adequate theory, it will be necessary
to choose a function G(E') which gives some reasonable fit to the empir-
ical data. Replacing the kinetic energy of the photoelectrons E' by

the dimensionless parameter £, where
E=E"/(E-W , (5.1)

the distribution function G(E') becomes a distribution in &, where,
according to Einstein's photoelectric equation, £ varies from zero to
unity. Noting the fact that G(g) must be zero at both £ = 0, and 1,
a function which fits the data reasonably well may be obtained by

adjusting two arbitrary parameters A and d in the following expression
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- 2 (1~ 2
G(g) = N [78(E2M/A% _(~Q=20/a% e gy 5.2

where N is an appropriate normalizing constant defined by

1
j‘ G(E) dg =1 s (5.3)
0

The constant ) is approximately at the maximum of the curve and corre-
sponds to the average value of <E'/(E - W)> =) % 0.4, equation
(3.11). The constant d determines the half width of the expression.

The value of 1/d is of the order of 3 for a reasonable fit to the exper-

imental data (e.g., Hughes and DuBridge, 1932).

II. Electron Density

If the distribution of photon energies according to the black
body formula, equation (3.26), is now included, the flux of electrons
from the surface of fractional kinetic energy £ = E'/(E - W) due to
photons of energy E per unit fractional kinetic energy df and per unit

photon energy dE is given by
d2n_/dE dE = b,G(£) F(E) E2e"E/KT | (5.4)

from equations (3.27), (3.28), (3.30), and (3.42), where the b, is

defined to be
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by = [15£BR /(7kT)*] (5.5)

where B is given by equation (3.39).
Including the distribution over all angles, equations (4.11) and
(4.12), the flux per unit angle 8 per unit photon energy and per unit

fractional energy £ becomes

d3n_/dE dE de = 2mb, sin 6 g(8) G(£) F(E) B2 /KT | (5.6)

From equations (3.6), (4.8), (4.16), and (5.1) the electron

density above the surface becomes

w 1
p = 2nb2y F(E)E2e /KT gE y G(g) dg
W 0

ds (5.7)

S“lz g(®) sin 6 S[E(E - W) cos?6 - V]
0 [E(E - W) cos20 - V]l/2

The angular distribution g(8), of the emitted electrons will be
assumed to follow the empirical curve specified by equation (4.15).

Making the substitution

y=vVE cos 8, (5.8)

in equation (5.7) yields
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@ 1
o = 21:25v F(E)E2e /KT g S {c(a) S[E(E - W) - V] /E} dE
. w 0
43
x {y/ [y?(E - W) - V] l/gdy . (5.9)
0

This result, equation (5.9), is the expression for the electron density
in its most general form.

Upon integration over the variable y, equation (5.9) yields

0= ZbJ [F(E)EZE_E/kT / (€& -w] dE
W

1
x f {G(g) EE - W) - v1V2 S[EE - w) - V] /E} e . (5.10)
0

III. Approximation 1) and Solution of Differential Equation

If the function G(£), equation (5.3), is substituted into equa-
tion (5.10), the resultant integral-differential equation which is
obtained by substituting equation (5.10) into equation (4.21), becomes
completely intractable. Some idea as to the effect of the G(&) dis-
tribution on the final result may be estimated, however, by considering

the approximation
G(®) ~=N&1 - &) . (5.11)

This approximation is a parabola with its maximum value at 1/2 rather
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than the value of M (= 0.4) as used in equation (5.2). By using the
normalization condition, equation (5.3), the value of N in equation

(5.11) is found to be

N=2¢6 . (5.12)

Substituting the approximation for G(¢), equation (5.11) into the equa-

tion for p, equation (5.10), yields

o= 121>2jV [F(E)E2E/RT (E - w)] dE
W

1
Xj 1 - & [E(E—W)-—V]1/28[£(E-W)—V] d¢ . (5.13)
0

Upon integration over &, equation (5.13) yields

oo

p = (16b2/5)g FEE2E/XT (g - w - v)¥25(E - w - v) /(E - W) °laE
W

(5.14)
Substituting in F(E) from equation (3.31) and making the substitution
y2=E-W-V , (5.15)

in equation (5.14) yields
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, o= (32b2/5)e'(w +'V)/kT]; yo(y2 + V)"l /KT gy (5.16)
f | 0

If it is assumed that V/KT << 1, the factor (y2 + V)~ in equation
(5.16) may be expanded in a power series and yields to the first order

invVv
o = (32,5 WV /kTJ‘ G -y eV My (5
0

a result valid for small values of V (near the surface z = 0). Upon

integrating and using equation (5.5), equation (5.17) yields

~V/KT

o = 96fBR°(2m/w7k5T5)1/2e"w/kT (3kT/2 - V) . (5.18)

The desired nonlinear differential equation may now be found by

substituting equation (5.18) into equation (4.21); this yields
d2v/dz? = -b,(3k1/2 - V)I/2TVIKT (5.19)
where the constant b, is defined to be

= 384fBRoe2(2m/n5k5T5)1/2e'W/kT

o
w
I

64fR0e2(2mA2/w5k5T5)1/2(6 + bx + x2)e” ¥ ,  (5.20)

where x = W/kT.
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Equation (5.19) may be integrated by multiplying both sides by dV/dz

and integrating; thus,
(dv/dz)? = 4by(kT)2(1/4 - V/kT)e VKT | (5.21)

where the boundary condition is used that dV/dz + O as V becomes large.

Making the substitution

u? = 1/4 - V/2kT . (5.22)

taking the square root and rearranging terms, equation (5.21) yields

Y1/%4 - V/2kT )
- (/4 - 0%) 44 < (b§/2/2) z . (5.23)

1/2

The integral in equation (5.23) is an error function and the equation

becomes
erf(1/2) - erf(/1/h = V/&kD) = (by/m)1/2e71/% 2 | (5.24)

The assumption has been made that V/KT << 1 and therefore the square
root term within the error function in equation (5.24) may be expanded

and equation (5.24) becomes

erf(1/2) ~ erf [(1 -‘V/kT)/2] = (bs/n)l/Ze‘l/“z . (5.25)

<3 e b TR
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For small values of V/kT, the error function may be expanded in a
Taylor series about the point 1/2 and equation (5.25) yields, to the

first power in V,

vabl/arz (5.26)

for small values of V/kT.

IV. Approximation 2) and Solution of Differential Equation

Equation (5.26) is valid only for small values of V/kT. It will
now be shown that it is possible to derive an approximate solution for
V which is valid for all values of z. Returning to equation (5.10),

and using the mean value theorem for the £ integral, there is a ¥ such

that
p = 2bzf {F(E)EZE'E/kT[z(E -w) - vIY2g[EE - Wy - v]/E(E - w>3 dE
W

1
x J° G(g) dg ’ (5.27)
0

where b, is defined by equation (5.5). Using the normalization con-

dition for G(&), equation (5.3), equation (5.27) yields

dE . (5.28)

w (F(E)E2e S/ ¥ [EE - w) - vIV/2S[EE - W) - V]
2b2J‘

W E(E - W)
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Using equation (3.31) for the function F(E), assuming that A = £, and

letting

E = AE - W) ,

equation (5.28) yields

o = (2b2/A3)e'(W+V/AkT)j[ Eo(E, - /2 B/ IsE — v) aE
0

Making the substitution

in equation (5.30), the density of electrons becomes

o = (4by/a3yc™ (HHD)/KT S J2y2 + vy e RINKT g
0 .

(5.29)

(5.30)

(5.31)

(5.32)

Where the step function in equation (5.30) makes the lower limit on the

integral in equation (5.32) zero. Upon integration, equation (5.32)

yields

p = by(3AKT/2 + V)e V/AKT

where the constant b, is

(5.33)
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15BR_£ (2m/n7A3k575) 1/ 26 ~W/KT

o
[

(5R0f/2)(2m/n7xk5T5)1/2(6 +4x + xDe* , (5.34)

where x = W/kT. The electron density, equation (5.33), may also be

written from equation (3.39) in the form

p=p (1+ 2v/32kT) e~ V/ART (5.35)

where the constant Po is given by
Py = 15Rof(mk/8n7k3T3)1/2(6 + 4x + x2)e7X . (5.36)

where the quantity x is defined by equation (3.40). This result may be

compared with equation (3.57).

The desired differential equation may now be obtained by substi-
tuting equation (5.33) into equation (4.21); which yields

d2v/dz2 = -4me?b, £(3NKT/2 + V)e V/AKT (5.37)

Multiplying both sides of equation (5.37) by dV/dz and integrating with

respect to z yields

(dV/dz)2 = bg(5/4 + v/2akT)e V/AKT (5.38)
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where the electric field which is proportional to dV/dz vanishes as V

approaches infinity and the constant b5 is defined by using equation

(3.39)

bs = 40£AR e2(6 + 4x + x?) (2m\/n%kT) /27X | (5.39)

Taking the square root of equation (5.38) and separating the variables

yilelds

'/
‘g (5/4 + V/2AkT)~1/2¢V/2XKT gy = bg/Z z (5.40)
0

where the potential energy V is chosen to be zero on the lunar surface.

By making the substitution

u? = 5/4 + V/2)kT , (5.41)
equation (5.40) yields
v5/4 + V/2\kT 5 ‘
s_S/ALf e¥ du = b, z R (5.42)
v5/4

where the constant b6 is defined by

b, = [25€"R2E2(6 + 4x + x2)2n/2n5Ak5T5) 1/ Hex/2 (5.43)
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where x = W/kT. The integral in equation (5.42) is of the form of

Dawson's Integral, which is defined by
w2 (7 2
D(y) = ¢ j' et” dt . (5.44)
0

The value of the Dawson Integral may be obtained from published tables
such as in the '"Handbook of Mathematical Functions" (Abramowitz and
Stegun, 1964). The solution of equation (5.42) may then be expressed in

terms of Dawson's Integrals, equation (5.44), and is

D(V574 + VKT )eV/ ¥ _ p(/57% ) = bg z . (5.45)

A plot of V/2XkT as a function of z is shown in Figure 5.1.
Equation (5.44) may be obtained in a power series by expanding

the exponential in the integrand; thus,

y o
D(y) = e'Yzj 20(1/n!)t:Zn dt . (5.46)
0 n=

Upon integration of equation (5.46) the desired power series becomes

D(y) = e_yz z [1/n!(2n + 1)1 y2n+1 . (5.47)
n=0

The solution, equation (5.45), may then be expressed as a power series,

(2n+1) /2

T [(1/n!(2n + 1)) (5/4 + V/2)\kT) 1] -1.82 = b 2z . (5.48)
=0
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The series in equation (5.48) converges for all values of V, but does
not converge very rapidly for values of V >> 2)kT.

For small values of V/2\kT the integral in equation (5.42) may be
evaluated by the mean value theorem for integrals; thus, evaluating the

integral at the midpoint yields

[(5/4 + V/2AkD) 1/2 = (5/8)1/2] (/3/4 + V/2ART + V5[4 )%

:;ss/4b6 z . (5.49)

For small values of V/2)kT the terms in equation (5.49) or (5.48) may

be again expanded in a power series yielding to the first power in V
V (2/5 AkTbg)z . (5.50)

The validity of the Approximation 2) may now be estimated by

comparing it with the Approximation 1) (more accurate for small V) in

the previous section which was obtained only for small values V (or z).
The slope of V as a function of z for z = 0 according to the more accu-
rate Approximation 1), equation (5.26), has the value of /E; kT ergs cm'l;
while the present Approximation 2), equation (5.50) yields the comparable
value of 2 V5 AkaG erg cm~l. The proper behavior of the Approximation 2)
for large z, thus, establishes the over-all utility of the second approx-
imation. The previous approximation, Approximation 1), need concern us

no further.
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For large values of the argument the difference between two
2
Dawson integrals times the exponential €Y may be obtained as an

asymptotic series by integrating equation (5.44) by parts; thus,
t2 t? 2 9oy -1
€2 D(t,) = " ID(ty) = & (2y)

+ ey 3 [2(2n-1) !/(n—l)! (2y)2n+ly (5.51)

n=1 y =1t
As applied to equation (5.42) the solution may be expressed in the

asymptotic series

(5 + 20/AD"/2[1 + £ 2(20-1)1/(@-1)1(5 + 2v/AkD)?] ¥/ 2AKT

n=1l

-1.82=b;z . (5.52)

As V > » equation (5.52) yields
V = 2)kT 1n(b, 2) . (5.53)

Once V is known as a function of z, the electron density may be
obtained from equation (5.33) and the known relation between V and z.
The plot of p/po as a function of z is shown in Figure 5.2. An expres-
sion for p as a function of z for small values of z may be found ana-
lytically by substituting equation (5.50) into equation (5.35) and

expanding the exponential under the assumption that z is small; thus,
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p oy (1 -2/50bg2/3) (5.54)
where the constant by is given in equation (5.43).

V. Surface Charge Density and Half Height

From equations (3.49) and (4.21) the surface charge density is

given by

z >

o= —(1/41re)S d?v/dz? dz = -(1/4me) dV/dz . (5.55)
0

At infinity the field vanishes or dV/dz = 0. At the surface z = 0,
V = 0 by definition (5.45). From equation (5.38) the surface charge

density then becomes

o = (5bg/B)/2ftme (5.56)

where bg is specified by equation (5.39).

From equation (3.51) and (4.21) the half height h, is specified

by

]
ot

h z
o/2 = -(1/4ne)‘y (d2v/dz2)dz = -(1/4me) dV/dz . (5.57)
0 2

(]
o

From equation (5.38) this yields the condition
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o/2 = (1/4me) §k5b5/4)1/2

- [bg(5/4 + V/22kT)]1/2¢=V/20KkT (5.58)
z =h
Using equation (5.56) this then yields
[(5/2 + V/AKT)e~V/AKT] =5/8 . (5.59)

z =h

The value of h may now be found by solving equation (5.59) numerically

for V/AkT and substituting the result into equation (5.45).

VI. Numerical Estimates of the Parameters

Using the values for k, A, T, W, and f as presented in Table 3.1,

the value for Pos equation (5.36), is found to be
py = 1.1 ¥ 10° cm™3 . (5.60)
The total surface charge density is found from equation (5.56) and is
g = 10 x 10™5 statcoul cm™? . (5.61)
The value of h as found from equations (5.58) and (5.45) is

h=1.6cm . (5.62)



These results are tabulated in Table 5.1.

Table 5.1 Parameters for the General Model

(all parameters which remain the same are given in Table 3.1)

Quantity Symbol Value
Electron density fo 11 x 10% em—3
Half height h 1.6 cm

Surface charge

density o 10 x 10~° statcoul cm™?
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CHAPTER VI

ADIABATIC GAS MODEL

I. Determination of the Electron Density

A completely different approach may be made to the problem of a
lunar atmosphere consisting of photoelectrons if it is assumed that the
adiabatic condition holds for the electron gas. With this assumption the

pressure of the gas is proportional to oY, or

p=ApY |, (6.1)
where A and y are constants which must be determined. In order for
equilibrium to exist, the net force on a unit volume of the photoelec-
tron gas must be zero. This equilibrium condition is satisfied if

- dp/dz + F =0 . (6.2)

where F is the body force on a unit volume of the gas at the point 2

above the surface. The body force is given by
F=-epE , (6.3)

where p is the electron density, E is the electrostatic field produced

by the electron distribution. The gravitational force is assumed to be
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negligible as compared to the force due to the electrostatic field. Ex-
pressing the electrostatic field E, as the negative gradient of a poten-

tial ¢, equation (6.2), using equation (6.3), becomes

dp/dz = epd¢/dz . (6.4)

Substituting equation (6.1) into equation (6.4) yields

vApY~ldp/dz = epddp/dz . (6.5)

Equation (6.5) may be rearranged and integrated yielding

[Ay/e(y - 1)] oY 1= ¢ , (6.6)

where the constant of integration has been chosen to satisfy the condi-

tion that p approaches zero as ¢ approaches zero in the region of z + =,

II. The Differential Equation and Its Solution

The desired differential equation may now be obtained by solving

equation (6.6) for p and substituting into Poisson's equation,

d2¢/dz? = 4mep . (6.7)

which yields
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d2¢/dzz = C0¢1/(Y—1) . (6.8)
where the constant s is defined as
c = hme [y - 1)e/yall/ (-1 . (6.9)

Multiplying both sides of equation (6.9) by d¢/dz and integrating over

the z coordinate yields
(d9/dz)? = [20y = D/y] e o/ O, - (6.10)

where the constant of integration has been chosen to satisfy the boundary
condition that d¢/dz approaches zero as ¢ becomes zero in the region of
z > o, |

Taking the minus sign with the square root of equation (6.10) and

integrating again yields
26 - D/ - PI6OD20 D2 121y~ 1ye /v11/22 + a constant . (6.11)

This yields the desired relation between the electrostatic potential ¢
and the height above the surface z. Using the boundary condition ¢ = ¢

at z = 0, the constant may be evaluated and equation (6.11) reduces to

¢ = loy + cyz120r /G- (6.12)
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where the constant c; is

e, = ¢, (-2)/2(x-1) (6.13)

and the constant c, is
cp = [2me (2 = V2/v(y - DIV 2[ely - 1/ya1 /20D (6.14)

The density p may now be obtained as a function of z by taking
the second derivative of ¢ with respect to z, equation (6.12), and
substituting the result into Poisson's equation, equation (6.7) or from

equations (6.12) and (6.6); this yields

p = po(l + c3z)2/(y"2) , (6.15)

where the constant p_ is
po = lely - 1o /va1t/ (D) (6.16)

and c, is given by

c3 = ey/e) = [21e(2 - )2/y(y - DIV2[e(y - 1)/ya6 "D 1/20rD) (6.17)

The constants ¢o and A remain to be determined.
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ITI. The Electron Density at the Surface, Po
The current passing through a unit area at the z = 0 plane is

given by

Jo = ePo (vzo> /2 , (6.18)

where the zero subscript indicates values at the z = 0 plane and the
brackets indicate the average velocity of the ejected photoelectrons as

they pass through the z = 0 plane. The current, jo» may also be given

by

jo = ~en s (6.19)

where n is the electron flux as defined in equation (3.45). Combining

equations (6.18) and (6.19) yields

Po = 20 /<v, > . (6.20)

The average kinetic energy of the photoelectrons as they are
ejected from the surface ignoring straggling may be obtained from the
effective mean energy E, equation (3.47). Using equation (3.11) the

kinetic energy of the photoelectrons as they leave the surface is

m<v§> /2 = 3XkT s (6.21)
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where T is the temperature of the Sun's surface. By assuming that the
electrons achieve an isotropic velocity distribution above the surface
and by using the principal of equipartition of energy, the average z

component of the velocity squared ‘<v§o>. , equation (6.21) becomes
2 =
<va;) 2XKT/m . (6.22)

The average upward velocity may now be approximated, using equation

(6.22), by
v, > &~ urmt/z (6.23)

The total flux, no, of the electrons passing upward through the
z = 0 plane is given by equation (3.43). The density Py may now be

found by combining equation (3.43), (6.20), and (6.23); which yields
0g = [10£R (6 + 4x + x2)/n4] (m/23TH/2e7F | (6.24)
where x = W/kT, which may be compared with equation (5.36).

IV. Evaluation of the Constants A and ¢°

According to the kinetic theory of gases the pressure of a mona-
tomic gas is proportional to the average kinetic energy of each molecule

(Sears, 1953)(i.e., each electron for this case), the relationship being
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p, =em&vi> /3, (6.25)

where the zero subscript designates values at the surface. Combining

equations (6.25) and (6.21) yields
P, = 2XkTp R (6.26)

where Po is given by equation (6.24). From equation (6.1) the constant

A may now be obtained; thus, using equation (6.26),

1-
A =p,/oY = 2>\kTpg AL (6.27)

Substituting this value of A into equation (6.6) and evaluating the
equation at the z = 0 surface the following expression for ¢° may be

obtained:
¢0 = 2y kT/e(y - 1) . (6.28)

V. Surface Charge Density and Half Height

From equation (3.49) and (6.15), the surface charge density

becomes

o= epoy0 1+ c3z)2/(Y_2)dz . (6.29)
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Upon integration equation  (6.29) yields
o = (2 -v)ep_/vc, ; (6.30)

where s and c, may be found from equations (6.24) and (6.17).
The half height h, of the charge distribution may be found from

equation (3.51) upon substituting equation (6.15) and integrating; thus,

h=c;l /vy, | (6.31)

VI. Numerical Estimates of the Parameters

For a monatomic gas the ratio of the specific heats Y, has the
value 5/3 (Sears, 1953). Using the values for A, k, T, and W from
Chapter III (see Table 3.1), the value of °, is found from equation

(6.24) to be

o = 8.2 X 10% em™3 . (6.32)

The expression for the electron density, equation (6.15) and (6.17),

becomes
p = py(1+0.0845 z)=% (6.33)

which may be compared with equations (3.22), (4.28), and (5.35). A plot
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of p/po versus z is shown in Figure 6.1. The surface charge density is

found from equation (6.30), using equation (6.32),
6 = 9.3 x 10”° statcoulombs cm—2 . (6.34)
The half height above the surface h, from equation (6.31) is
h=1.8cm . (6.35)

The constants are tabulated in Table 6.1.

Table 6.1 Parameters for the Adiabatic Gas Model

(other parameters that remain the same are presented in Table 3.1)

Quantity Symbol Value
Electron density Py 8.2 x 10% em™3
Half height h 1.8 cm

Surface charge

density o 9,3 x 107° statcoul cm
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CHAPTER VII

DISCUSSION OF THE VARIOUS MODELS AND OBSERVATIONS

The four different models considered in the previous chapters
may now be compared. The numerical results are collected in Table 7.1.
By examining Table 7.1, it may be seen that the average parameters, sur-
face charge demnsity, o, the half height, h, and the mean charge density
near the surface p = o/2eh are all within a reasonable range of each
other for the various models. However, only the numerical values for
the more General Model and the Adiabatic Gas Model are of sufficient
accuracy to warrant any serious consideration. The other models were
discussed to provide a stepwise development of the theory and to pro-
vide a convenient rough check on the more accurate results.

The agreement between the various models in Table 7.1 indicates
that the results do not depend strongly upon the particular model chosen
(to within the many approximations made). It is, thus, possible to
have some degree of confidence in the results. The particular choices
for the parameters, A, W and f (which affect all of the models) are sub-
ject to considerable doubt. Any discrepancy between theory and observa-
tion may therefore be properly assigned to the uncertainty in these
parameters rather than an uncertainty in the theory (either the General
Model or the Adiabatic Gas Model).

Of the parameters o, h, and p only § has been estimated by obser-

vation. Elsmore and Whitfield (1955) and Costain, Elsmore and Whitfield
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(1956) estimate a free electron density of the lunar atmosphere of the
order of 103 or 10" cm™3. These values are considerably lower than the
value of p presented in Table 7.1. This is not surprising, however,
since p measures the average density near the surface and does not
indicate the much lower density which trails off to infinity. It may
also be noted that any gas molecules present will tend to expand the
photoelectron atmosphere by providing some positive charge above the
surface. The low values of the electron density observed can probably
be accounted for in this way. A lower emission rate from the surface
due to a larger W, smaller f or smaller A would also raise h, lower o,
and lower o.

The functional relationship indicating how the charge density
varies with height above the lunar surface is indicated in Figures 3.1,
4,1, 5.2, and 6.1. The curve for the Simplest Model is clearly unreal-
istic, even though the Simplest Model can provide a rough estimate of
the average parameters involved. The General Model and the Adiabatic
Gas Model give an electron atmosphere which drops off rapidly with

height in a manner which appears to be reasonable.
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CHAPTER VIII

SOME CONSEQUENCES OF A PHOTOELECTRON ATMOSPHERE

The effects of the photoelectron atmosphere on the Moon may now

be estimated using the theoretical models developed in Chapters III, IV,
V, and VI. The precise nature of the Moon's surface remains unknown.
Consequently the yield factor, f, and the work function, W, for the
lunar surface remain unknown. A decrease in the yield factor or an
increase in the work function W, would raise the half height h, decrease
the surface charge density ¢, and decrease the average electron den-
sity p. The presence of positively charged ions or particles in the

atmosphere could greatly increase the height of the distribution.

I. Levitation of Charged Dust Particles

The solar wind, solar radiation, and cosmic rays will charge
small dust particles near the lunar surface. A positively charged
particle will experience an upward force in the electrostatic field
produced by the photoelectron space-charge distribution above the
surface. If the electrostatic force equals the gravitational force,
the particle is levitated above the surface. Any lateral variation
in the charge density will cause a lateral movement of the positively
charged particle. Positively charged particles will tend to return to
the lunar surface at points where the electrostatic field vanishes or

is small, i.e., areas of shadow or depressions. This provides an
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explanation of how cosmic dust or dust kicked up by meteorites might
become distributed over the lunar surface in such a way as to smooth
the surface on the scale of 10 centimeters. The consolidation of the
surface after the dust particles have been deposited may be assumed
to occur under the bombardment of the solar wind and cosmic rays.

The mass of the particles that can be levitated may be esti-

mated by considering the force exerted on a charged particle; thus,
F = -q d¢/dz . (8.1)

where ¢ is the electric potential at the point z above the surface and
q is the charge on the particle. The mass M, which may be supported by
the electrostatic field at the point z above the lunar surface then

becomes
M = -(q/a)d¢/dz , (8.2)

where a is the acceleration of gravity at the lunar surface.

The maximum mass that may be levitated at a height z for the
Simple Model may be found from the known value of ¢ as given by equation
(3.21) and (3.2). Taking the first derivative of equation (3.21), using
equations (3.2), (3.17), (3.25), (3.48), and (3.55), and substituting

the result into equation (8.2) yields

M=M_(1- z/zm)1/3 , (8.3)
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where M, the maximum mass that may be levitated at z = 0, is given by

(4q/a) (mn ) /2 (6mr3/kT) M/ He—x/2

=
]

(4a/2) [5£R (6 + bx + x2)/n3]1/2(ema3/km) /4 ™/2 | (8.4)

where x is defined by equation (3.40).

The Modified Simple Model yields the maximum mass that can be
levitated as a function of z from equation (4.25) and (4.16). Taking a
first derivative of equation (4.25), using equations (4.16), (4.23),

(3.48) and (3.2), and substituting the result into equation (8.2) yields
= - 3
M= Mo(l z/zm) s (8.5)

where Mo’ the maximum mass that can be levitated at the surface z = 0,

is given by

=
]

(8a/a) (wn ) 1/ 2 (mikT/6) /"

(8q/a) [5fR0(6 + 4x + xz)/ﬂal1/2(mA3/6kT)1/”e'x/2 , (8.6)

where x is defined by equation (3.40). This result may be compared with
equations (8.3) and (8.4).
The maximum mass levitated as a function of V for the General

Model may be found from equation (5.38). Taking the square root of
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equation (5.38), using equations (5.39) and (3.40), and substituting
the result into equation (8.2) yields

2,~V/2AKT

M = M (1 + 2v/5xkr) 1/ . (8.7)

where M, is given by
M= (5q/a) [26R (6 + 4x + x2)11/2(2mA3/nSkm) 1/ %e®/2 | (8.8)

where x is defined by equation (3.40). This result may be compared with
equations (8.4) and (8.6). The mass M as a function of z may be obtained
by using equation (5.45) to obtain V as a function of z (see Figure 5.1).
The maximum mass levitated as a function of z for the Adiabatic
Gas Model may be found from equation (6.10). Taking the first deriva-
tive of equation (6.12) and substituting into equation (8.2) with the

appropriate change of sign
M= M (1+ cz) YO (8.9)

where c, is a constant defined by equation (6.17) and M,, the maximum

mass that can be levitated at the surface z = 0, is given by

M) = [2q9(y - Dey/a(2 - 7)) c¥/(Y_2) , (8.10)

where c, and c, are defined by equations (6.13) and (6.14). Using
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equations (6.27) for A and (6.28) for ¢o’ and equation (6.24) for o,

M, becomes
M = (4q/a) [56R (6 + 4x + x2)/v311/2C2m 3k /%, (8.11)

which may be compared with equations (8.4), (8.6) and (8.8). From equa-

tions (6.17), (6.27), (6.28), and (6.24),
cy = [e(2 - v)/yn2kT] [10m£R (6 + dx +x2) ] M2(myzmt/t  ,  (8.12)

where x is defined by equation (3.40).

Assuming that a particle can have a positive charge of approximate-
ly 10 electron charges; M, for the various models, using q = 10e and
using a = 167 cm sec"2 (Handbook of Chemistry and Physics, 1964) for the
Moon, equations (8.4), (8.6), (8.8) and (8.11), is given in Table 8.1.

The density of a lunar electron atmosphere is of such a small
magnitude that it produces no effect on the lunar features other than
through the electrostatic forces exerted on charged particles. Although
the maximum mass which may be levitated is very small, the net effect
over a very long period of time could be considerable.

The size of the dust particle which may be levitated assuming a

density of 2 is approximately

d= (M /410)/3>1.6x10%emn (8.13)
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which compares with the optical estimate of 0.03 centimeter for grains

observed on the moon.

II. Communication Through Photoelectron Atmosphere

The presence of an electron atmosphere near the lunar surface may
provide a means for communicating over the lunar horizon, beyond the
line of sight. A longitudinal plasma wave can be propagated in the
atmosphere. The velocity of propagation of a longitudinal wave in a

plasma is given (Stix, 1962) by
v =uw/k=8//1- w%/wz , (8.14)

where B is the velocity of sound in the medium, mp is the plasma fre-

quency; which is

mg = 4mep/m , (8.15)

and w is the impressed frequency. The value of p for the two most
realistic models falls at approximately 6 x 10* per cubic centimeter.

Using this average value for p, wp, equation (8.14), yields the value

w, = 1.3 x 107 sec™! . (8.16)

This is a frequency of about 10 megacycles. This plasma frequency w_ is




81

the cut off frequency, or lowest frequency, which will propagate in the
plasma. The value of B is given (Sears and Zemansky, 1955) by

B = Yyp/mp s (8.17)
where p is the pressure and p is the density. Using the Adiabatic Model

as an example, the ratio of p to p is given by equation (6.26). The

value of B then is, using y = 5/3,

B = 2.4 x 107 cm sec™! ., (8.18)

This is a lower limit for the velocity of propagation of a longitudinal
wave in the plasma, the actual velocity being governed by equation
(8.14).

Due to the lack of sources which produce perturbations of the
space-charge near the lunar surface, it should be possible to detect
waves of very low energy density, the lower limit being determined by
the design of the detector. A suitable generating and detecting system

would have to be designed for this purpose.

ITII. Occultations of Radio Stars

An electron atmosphere confined to within a few meters of the
lunar surface will probably not produce any measurable occultation of
radio stars prior to the occultation by the solid lunar surface. How-

ever, as mentioned previously, there are several mechanisms which might
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act to raise the height to a distance at which the charge distribution
might produce occultations of radio stars before the solid surface.
Residual gases retained near the lunar surface by the Moon's gravita-
tional field, and positively charged particles supported by the electro-
static field, will have a considerable effect on the height of the
photoelectron atmosphere. The actual effect of such residual gases and
dust particles would be hard to predict, but it is conceivable that they
could expand the atmosphere to a height such that it might be able to

produce the occultations of radio stars as observed experimentally.

Table 8.1 Values of Mo for the Various Models
(Using q = 10e; other parameters that remain

the same are presented in Table 7.1)

Simplest Model Modified General Model  Adiabatic Gas Model

Simple Model

4.4 x 10”14 3.6 x 10-1% 3.5 x 10-1% 3.3 x 10~1* grams
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